Your browser doesn't support javascript.
loading
: 20 | 50 | 100
1 - 17 de 17
1.
Comput Biol Med ; 135: 104541, 2021 08.
Article En | MEDLINE | ID: mdl-34166880

The volume of daily patient arrivals at Emergency Departments (EDs) is unpredictable and is a significant reason of ED crowding in hospitals worldwide. Timely forecast of patients arriving at ED can help the hospital management in early planning and avoiding of overcrowding. Many different ED patient arrivals forecasting models have previously been proposed by using time series analysis methods. Even though the time series methods such as Linear and Logistic Regression, Autoregressive Integrated Moving Average (ARIMA), Seasonal ARIMA (SARIMA), Exponential Smoothing (ES), and Artificial Neural Network (ANN) have been explored extensively for the ED forecasting model development, the few significant limitations of these methods associated in the analysis of time series data make the models inadequate in many practical situations. Therefore, in this paper, Machine Learning (ML)-based Random Forest (RF) regressor, and Deep Neural Network (DNN)-based Long Short-Term Memory (LSTM) and Convolutional Neural network (CNN) methods, which have not been explored to the same extent as the other time series techniques, are implemented by incorporating meteorological and calendar parameters for the development of forecasting models. The performances of the developed three models in forecasting ED patient arrivals are evaluated. Among the three models, CNN outperformed for short-term (3 days in advance) patient arrivals prediction with Mean Absolute Percentage Error (MAPE) of 9.24% and LSTM performed better for moderate-term (7 days in advance) patient arrivals prediction with MAPE of 8.91% using weather forecast information. Whereas, LSTM model outperformed with MAPE of 8.04% compared to 9.53% by CNN and 10.10% by RF model for current day prediction of patient arrivals using 3 days past weather information. Thus, for short-term ED patient arrivals forecasting, DNN-based model performed better compared to RF regressor ML-based model.


Emergency Service, Hospital , Neural Networks, Computer , Forecasting , Humans , Machine Learning
2.
Comput Methods Programs Biomed ; 203: 106010, 2021 May.
Article En | MEDLINE | ID: mdl-33831693

BACKGROUND AND OBJECTIVES: Celiac disease is an autoimmune disease occurring in about 1 in 100 people worldwide. Early diagnosis and efficient treatment are crucial in mitigating the complications that are associated with untreated celiac disease, such as intestinal lymphoma and malignancy, and the subsequent high morbidity. The current diagnostic methods using small intestinal biopsy histopathology, endoscopy, and video capsule endoscopy (VCE) involve manual interpretation of photomicrographs or images, which can be time-consuming and difficult, with inter-observer variability. In this paper, a machine learning technique was developed for the automation of biopsy image analysis to detect and classify villous atrophy based on modified Marsh scores. This is one of the first studies to employ conventional machine learning to automate the use of biopsy images for celiac disease detection and classification. METHODS: The Steerable Pyramid Transform (SPT) method was used to obtain sub bands from which various types of entropy and nonlinear features were computed. All extracted features were automatically classified into two-class and multi-class, using six classifiers. RESULTS: An accuracy of 88.89%, was achieved for the classification of two-class villous abnormalities based on analysis of Hematoxylin and Eosin (H&E) stained biopsy images. Similarly, an accuracy of 82.92% was achieved for the two-class classification of red-green-blue (RGB) biopsy images. Also, an accuracy of 72% was achieved in the classification of multi-class biopsy images. CONCLUSION: The results obtained are promising, and demonstrate the possibility of automating biopsy image interpretation using machine learning. This can assist pathologists in accelerating the diagnostic process without bias, resulting in greater accuracy, and ultimately, earlier access to treatment.


Capsule Endoscopy , Celiac Disease , Algorithms , Biopsy , Celiac Disease/diagnosis , Humans , Machine Learning
3.
Int J Imaging Syst Technol ; 31(2): 455-471, 2021 Jun.
Article En | MEDLINE | ID: mdl-33821093

In 2020 the world is facing unprecedented challenges due to COVID-19. To address these challenges, many digital tools are being explored and developed to contain the spread of the disease. With the lack of availability of vaccines, there is an urgent need to avert resurgence of infections by putting some measures, such as contact tracing, in place. While digital tools, such as phone applications are advantageous, they also pose challenges and have limitations (eg, wireless coverage could be an issue in some cases). On the other hand, wearable devices, when coupled with the Internet of Things (IoT), are expected to influence lifestyle and healthcare directly, and they may be useful for health monitoring during the global pandemic and beyond. In this work, we conduct a literature review of contact tracing methods and applications. Based on the literature review, we found limitations in gathering health data, such as insufficient network coverage. To address these shortcomings, we propose a novel intelligent tool that will be useful for contact tracing and prediction of COVID-19 clusters. The solution comprises a phone application combined with a wearable device, infused with unique intelligent IoT features (complex data analysis and intelligent data visualization) embedded within the system to aid in COVID-19 analysis. Contact tracing applications must establish data collection and data interpretation. Intelligent data interpretation can assist epidemiological scientists in anticipating clusters, and can enable them to take necessary action in improving public health management. Our proposed tool could also be used to curb disease incidence in future global health crises.

4.
Pflugers Arch ; 472(12): 1743-1755, 2020 12.
Article En | MEDLINE | ID: mdl-32940784

Nitric oxide (NO) affects mitochondrial activity through its interactions with complexes. Here, we investigated regulations of complex I (C-I) and complex II (C-II) by neuronal NO synthase (nNOS) in the presence of fatty acid supplementation and the impact on left ventricular (LV) mitochondrial activity from sham and angiotensin II (Ang-II)-induced hypertensive (HTN) rats. Our results showed that nNOS protein was expressed in sham and HTN LV mitochondrial enriched fraction. In sham, oxygen consumption rate (OCR) and intracellular ATP were increased by palmitic acid (PA) or palmitoyl-carnitine (PC). nNOS inhibitor, S-methyl-l-thiocitrulline (SMTC), did not affect OCR or cellular ATP increment by PA or PC. However, SMTC increased OCR with PA + malonate (a C-II inhibitor), but not with PA + rotenone (a C-I inhibitor), indicating that nNOS attenuates C-I with fatty acid supplementation. Indeed, SMTC increased C-I activity but not that of C-II. Conversely, nNOS-derived NO was increased by rotenone + PA in LV myocytes. In HTN, PC increased the activity of C-I but reduced that of C-II, consequently OCR was reduced. SMTC increased both C-I and C-II activities with PC, resulted in OCR enhancement in the mitochondria. Notably, SMTC increased OCR only with rotenone, suggesting that nNOS modulates C-II-mediated OCR in HTN. nNOS-derived NO was partially reduced by malonate + PA. Taken together, nNOS attenuates C-I-mediated mitochondrial OCR in the presence of fatty acid in sham and C-I modulates nNOS activity. In HTN, nNOS attenuates C-I and C-II activities whereas interactions between nNOS and C-II maintain mitochondrial activity.


Electron Transport Complex II/metabolism , Electron Transport Complex I/metabolism , Hypertension/metabolism , Mitochondria, Heart/metabolism , Nitric Oxide Synthase Type I/metabolism , Angiotensin II/toxicity , Animals , Cells, Cultured , Citrulline/analogs & derivatives , Citrulline/pharmacology , Electron Transport Complex I/antagonists & inhibitors , Electron Transport Complex II/antagonists & inhibitors , Enzyme Inhibitors/pharmacology , Hypertension/etiology , Hypertension/physiopathology , Male , Malonates/pharmacology , Myocytes, Cardiac/metabolism , Myocytes, Cardiac/physiology , Nitric Oxide Synthase Type I/antagonists & inhibitors , Oxygen Consumption , Rats , Rats, Sprague-Dawley , Rotenone/pharmacology , Thiourea/analogs & derivatives , Thiourea/pharmacology
5.
Comput Methods Programs Biomed ; 161: 133-143, 2018 Jul.
Article En | MEDLINE | ID: mdl-29852956

Cardiovascular diseases (CVDs) are the leading cause of deaths worldwide. The rising mortality rate can be reduced by early detection and treatment interventions. Clinically, electrocardiogram (ECG) signal provides useful information about the cardiac abnormalities and hence employed as a diagnostic modality for the detection of various CVDs. However, subtle changes in these time series indicate a particular disease. Therefore, it may be monotonous, time-consuming and stressful to inspect these ECG beats manually. In order to overcome this limitation of manual ECG signal analysis, this paper uses a novel discrete wavelet transform (DWT) method combined with nonlinear features for automated characterization of CVDs. ECG signals of normal, and dilated cardiomyopathy (DCM), hypertrophic cardiomyopathy (HCM) and myocardial infarction (MI) are subjected to five levels of DWT. Relative wavelet of four nonlinear features such as fuzzy entropy, sample entropy, fractal dimension and signal energy are extracted from the DWT coefficients. These features are fed to sequential forward selection (SFS) technique and then ranked using ReliefF method. Our proposed methodology achieved maximum classification accuracy (acc) of 99.27%, sensitivity (sen) of 99.74%, and specificity (spec) of 98.08% with K-nearest neighbor (kNN) classifier using 15 features ranked by the ReliefF method. Our proposed methodology can be used by clinical staff to make faster and accurate diagnosis of CVDs. Thus, the chances of survival can be significantly increased by early detection and treatment of CVDs.


Cardiovascular Diseases/diagnosis , Electrocardiography , Myocardial Infarction/diagnosis , Nonlinear Dynamics , Pattern Recognition, Automated , Wavelet Analysis , Algorithms , Analysis of Variance , Arrhythmias, Cardiac/diagnosis , Automation , Bayes Theorem , Cluster Analysis , Computer Simulation , Fractals , Fuzzy Logic , Humans , Probability , Reproducibility of Results , Sensitivity and Specificity , Signal Processing, Computer-Assisted
6.
J Zhejiang Univ Sci B ; 19(1): 6-24, 2018.
Article En | MEDLINE | ID: mdl-29308604

Radiology (imaging) and imaging-guided interventions, which provide multi-parametric morphologic and functional information, are playing an increasingly significant role in precision medicine. Radiologists are trained to understand the imaging phenotypes, transcribe those observations (phenotypes) to correlate with underlying diseases and to characterize the images. However, in order to understand and characterize the molecular phenotype (to obtain genomic information) of solid heterogeneous tumours, the advanced sequencing of those tissues using biopsy is required. Thus, radiologists image the tissues from various views and angles in order to have the complete image phenotypes, thereby acquiring a huge amount of data. Deriving meaningful details from all these radiological data becomes challenging and raises the big data issues. Therefore, interest in the application of radiomics has been growing in recent years as it has the potential to provide significant interpretive and predictive information for decision support. Radiomics is a combination of conventional computer-aided diagnosis, deep learning methods, and human skills, and thus can be used for quantitative characterization of tumour phenotypes. This paper discusses the overview of radiomics workflow, the results of various radiomics-based studies conducted using various radiological images such as computed tomography (CT), magnetic resonance imaging (MRI), and positron-emission tomography (PET), the challenges we are facing, and the potential contribution of radiomics towards precision medicine.


Precision Medicine/methods , Radiology, Interventional/methods , Radiology/methods , Biomarkers, Tumor , Diagnosis, Computer-Assisted , Genome , Genomics , Humans , Magnetic Resonance Imaging , Neoplasms/therapy , Phenotype , Positron-Emission Tomography , Tomography, X-Ray Computed , Workflow
7.
Comput Biol Med ; 91: 13-20, 2017 12 01.
Article En | MEDLINE | ID: mdl-29031099

Shear wave elastography (SWE) examination using ultrasound elastography (USE) is a popular imaging procedure for obtaining elasticity information of breast lesions. Elasticity parameters obtained through SWE can be used as biomarkers that can distinguish malignant breast lesions from benign ones. Furthermore, the elasticity parameters extracted from SWE can speed up the diagnosis and possibly reduce human errors. In this paper, Shearlet transform and local binary pattern histograms (LBPH) are proposed as an original algorithm to differentiate malignant and benign breast lesions. First, Shearlet transform is applied on the SWE images to acquire low frequency, horizontal and vertical cone coefficients. Next, LBPH features are extracted from the Shearlet transform coefficients and subjected to dimensionality reduction using locality sensitivity discriminating analysis (LSDA). The reduced LSDA components are ranked and then fed to several classifiers for the automated classification of breast lesions. A probabilistic neural network classifier trained only with seven top ranked features performed best, and achieved 98.08% accuracy, 98.63% sensitivity, and 97.59% specificity in distinguishing malignant from benign breast lesions. The high sensitivity and specificity of our system indicates that it can be employed as a primary screening tool for faster diagnosis of breast malignancies, thereby possibly reducing the mortality rate due to breast cancer.


Breast Neoplasms/diagnostic imaging , Elasticity Imaging Techniques/methods , Image Interpretation, Computer-Assisted/methods , Algorithms , Breast/diagnostic imaging , Female , Humans , Sensitivity and Specificity
8.
Comput Biol Med ; 85: 33-42, 2017 06 01.
Article En | MEDLINE | ID: mdl-28433870

An accurate detection of preterm labor and the risk of preterm delivery before 37 weeks of gestational age is crucial to increase the chance of survival rate for both mother and the infant. Thus, the uterine contractions measured using uterine electromyogram (EMG) or electro hysterogram (EHG) need to have high sensitivity in the detection of true preterm labor signs. However, visual observation and manual interpretation of EHG signals at the time of emergency situation may lead to errors. Therefore, the employment of computer-based approaches can assist in fast and accurate detection during the emergency situation. This work proposes a novel algorithm using empirical mode decomposition (EMD) combined with wavelet packet decomposition (WPD), for automated prediction of pregnant women going to have premature delivery by using uterine EMG signals. The EMD is performed up to 11 levels on the normal and preterm EHG signals to obtain the different intrinsic mode functions (IMFs). These IMFs are further subjected to 6 levels of WPD and from the obtained coefficients, eight different features are extracted. From these extracted features, only the significant features are selected using particle swarm optimization (PSO) method and selected features are ranked by Bhattacharyya technique. All the ranked features are fed to support vector machine (SVM) classifier for automated differentiation and achieved an accuracy of 96.25%, sensitivity of 95.08%, and specificity of 97.33% using only ten EHG signal features. Our proposed algorithm can be used in gynecology departments of hospitals to predict the preterm or normal delivery of pregnant women.


Electromyography/methods , Obstetric Labor, Premature/diagnosis , Signal Processing, Computer-Assisted , Uterine Contraction/physiology , Uterus/physiology , Female , Humans , Obstetric Labor, Premature/physiopathology , Pregnancy
9.
Comput Biol Med ; 83: 48-58, 2017 04 01.
Article En | MEDLINE | ID: mdl-28231511

Identification of alarming features in the electrocardiogram (ECG) signal is extremely significant for the prediction of congestive heart failure (CHF). ECG signal analysis carried out using computer-aided techniques can speed up the diagnosis process and aid in the proper management of CHF patients. Therefore, in this work, dual tree complex wavelets transform (DTCWT)-based methodology is proposed for an automated identification of ECG signals exhibiting CHF from normal. In the experiment, we have performed a DTCWT on ECG segments of 2s duration up to six levels to obtain the coefficients. From these DTCWT coefficients, statistical features are extracted and ranked using Bhattacharyya, entropy, minimum redundancy maximum relevance (mRMR), receiver-operating characteristics (ROC), Wilcoxon, t-test and reliefF methods. Ranked features are subjected to k-nearest neighbor (KNN) and decision tree (DT) classifiers for automated differentiation of CHF and normal ECG signals. We have achieved 99.86% accuracy, 99.78% sensitivity and 99.94% specificity in the identification of CHF affected ECG signals using 45 features. The proposed method is able to detect CHF patients accurately using only 2s of ECG signal length and hence providing sufficient time for the clinicians to further investigate on the severity of CHF and treatments.


Algorithms , Diagnosis, Computer-Assisted/methods , Electrocardiography/methods , Heart Failure/diagnosis , Machine Learning , Wavelet Analysis , Adult , Aged , Aged, 80 and over , Computer Simulation , Data Interpretation, Statistical , Female , Humans , Male , Middle Aged , Models, Statistical , Pattern Recognition, Automated/methods , Reproducibility of Results , Sensitivity and Specificity , Young Adult
10.
Phys Med ; 33: 1-15, 2017 Jan.
Article En | MEDLINE | ID: mdl-28010920

The diagnosis of Coronary Artery Disease (CAD), Myocardial Infarction (MI) and carotid atherosclerosis is of paramount importance, as these cardiovascular diseases may cause medical complications and large number of death. Ultrasound (US) is a widely used imaging modality, as it captures moving images and image features correlate well with results obtained from other imaging methods. Furthermore, US does not use ionizing radiation and it is economical when compared to other imaging modalities. However, reading US images takes time and the relationship between image and tissue composition is complex. Therefore, the diagnostic accuracy depends on both time taken to read the images and experience of the screening practitioner. Computer support tools can reduce the inter-operator variability with lower subject specific expertise, when appropriate processing methods are used. In the current review, we analysed automatic detection methods for the diagnosis of CAD, MI and carotid atherosclerosis based on thoracic and Intravascular Ultrasound (IVUS). We found that IVUS is more often used than thoracic US for CAD. But for MI and carotid atherosclerosis IVUS is still in the experimental stage. Furthermore, thoracic US is more often used than IVUS for computer aided diagnosis systems.


Carotid Artery Diseases/diagnostic imaging , Coronary Artery Disease/diagnostic imaging , Diagnosis, Computer-Assisted/methods , Myocardial Infarction/diagnostic imaging , Ultrasonography/methods , Humans , Image Processing, Computer-Assisted
11.
Comput Biol Med ; 79: 250-258, 2016 12 01.
Article En | MEDLINE | ID: mdl-27825038

Fatty liver disease (FLD) is reversible disease and can be treated, if it is identified at an early stage. However, if diagnosed at the later stage, it can progress to an advanced liver disease such as cirrhosis which may ultimately lead to death. Therefore, it is essential to detect it at an early stage before the disease progresses to an irreversible stage. Several non-invasive computer-aided techniques are proposed to assist in the early detection of FLD and cirrhosis using ultrasound images. In this work, we are proposing an algorithm to discriminate automatically the normal, FLD and cirrhosis ultrasound images using curvelet transform (CT) method. Higher order spectra (HOS) bispectrum, HOS phase, fuzzy, Kapoor, max, Renyi, Shannon, Vajda and Yager entropies are extracted from CT coefficients. These extracted features are subjected to locality sensitive discriminant analysis (LSDA) feature reduction method. Then these LSDA coefficients ranked based on F-value are fed to different classifiers to choose the best performing classifier using minimum number of features. Our proposed technique can characterize normal, FLD and cirrhosis using probabilistic neural network (PNN) classifier with an accuracy of 97.33%, specificity of 100.00% and sensitivity of 96.00% using only six features. In addition, these chosen features are used to develop a liver disease index (LDI) to differentiate the normal, FLD and cirrhosis classes using a single number. This can significantly help the radiologists to discriminate FLD and cirrhosis in their routine liver screening.


Fatty Liver/diagnostic imaging , Image Interpretation, Computer-Assisted/methods , Liver Cirrhosis/diagnostic imaging , Ultrasonography/methods , Adolescent , Adult , Aged , Aged, 80 and over , Algorithms , Child , Child, Preschool , Discriminant Analysis , Entropy , Female , Humans , Male , Middle Aged , Models, Statistical , Neural Networks, Computer , Young Adult
12.
Invest Ophthalmol Vis Sci ; 57(4): 1974-81, 2016 Apr 01.
Article En | MEDLINE | ID: mdl-27096755

PURPOSE: Lid warming is the major treatment for meibomian gland dysfunction (MGD). The purpose of the study was to determine the longitudinal changes of tear evaporation after lid warming in patients with MGD. METHODS: Ninety patients with MGD were enrolled from a dry eye clinic at Singapore National Eye Center in an interventional trial. Participants were treated with hot towel (n = 22), EyeGiene (n = 22), or Blephasteam (n = 22) twice daily or a single 12-minute session of Lipiflow (n = 24). Ocular surface infrared thermography was performed at baseline and 4 and 12 weeks after the treatment, and image features were extracted from the captured images. RESULTS: The baseline of conjunctival tear evaporation (TE) rate (n = 90) was 66.1 ± 21.1 W/min. The rates were not significantly different between sexes, ages, symptom severities, tear breakup times, Schirmer test, corneal fluorescein staining, or treatment groups. Using a general linear model (repeat measures), the conjunctival TE rate was reduced with time after treatment. A higher baseline evaporation rate (≥ 66 W/min) was associated with greater reduction of evaporation rate after treatment. Seven of 10 thermography features at baseline were predictive of reduction in irritative symptoms after treatment. CONCLUSIONS: Conjunctival TE rates can be effectively reduced by lid warming treatment in some MGD patients. Individual baseline thermography image features can be predictive of the response to lid warming therapy. For patients that do not have excessive TE, additional therapy, for example, anti-inflammatory therapy, may be required.


Eyelid Diseases/therapy , Hot Temperature/therapeutic use , Meibomian Glands , Tears/metabolism , Adult , Aged , Aged, 80 and over , Female , Humans , Longitudinal Studies , Male , Middle Aged , Thermography , Young Adult
13.
Comput Biol Med ; 71: 241-51, 2016 Apr 01.
Article En | MEDLINE | ID: mdl-26897481

Early expansion of infarcted zone after Acute Myocardial Infarction (AMI) has serious short and long-term consequences and contributes to increased mortality. Thus, identification of moderate and severe phases of AMI before leading to other catastrophic post-MI medical condition is most important for aggressive treatment and management. Advanced image processing techniques together with robust classifier using two-dimensional (2D) echocardiograms may aid for automated classification of the extent of infarcted myocardium. Therefore, this paper proposes novel algorithms namely Curvelet Transform (CT) and Local Configuration Pattern (LCP) for an automated detection of normal, moderately infarcted and severely infarcted myocardium using 2D echocardiograms. The methodology extracts the LCP features from CT coefficients of echocardiograms. The obtained features are subjected to Marginal Fisher Analysis (MFA) dimensionality reduction technique followed by fuzzy entropy based ranking method. Different classifiers are used to differentiate ranked features into three classes normal, moderate and severely infarcted based on the extent of damage to myocardium. The developed algorithm has achieved an accuracy of 98.99%, sensitivity of 98.48% and specificity of 100% for Support Vector Machine (SVM) classifier using only six features. Furthermore, we have developed an integrated index called Myocardial Infarction Risk Index (MIRI) to detect the normal, moderately and severely infarcted myocardium using a single number. The proposed system may aid the clinicians in faster identification and quantification of the extent of infarcted myocardium using 2D echocardiogram. This system may also aid in identifying the person at risk of developing heart failure based on the extent of infarcted myocardium.


Algorithms , Data Mining/methods , Echocardiography/methods , Image Processing, Computer-Assisted/methods , Myocardial Infarction/diagnostic imaging , Support Vector Machine , Female , Heart Failure/diagnostic imaging , Heart Failure/etiology , Humans , Male , Myocardial Infarction/complications
14.
Comput Biol Med ; 71: 231-40, 2016 Apr 01.
Article En | MEDLINE | ID: mdl-26898671

Cross-sectional view echocardiography is an efficient non-invasive diagnostic tool for characterizing Myocardial Infarction (MI) and stages of expansion leading to heart failure. An automated computer-aided technique of cross-sectional echocardiography feature assessment can aid clinicians in early and more reliable detection of MI patients before subsequent catastrophic post-MI medical conditions. Therefore, this paper proposes a novel Myocardial Infarction Index (MII) to discriminate infarcted and normal myocardium using features extracted from apical cross-sectional views of echocardiograms. The cross-sectional view of normal and MI echocardiography images are represented as textons using Maximum Responses (MR8) filter banks. Fractal Dimension (FD), Higher-Order Statistics (HOS), Hu's moments, Gabor Transform features, Fuzzy Entropy (FEnt), Energy, Local binary Pattern (LBP), Renyi's Entropy (REnt), Shannon's Entropy (ShEnt), and Kapur's Entropy (KEnt) features are extracted from textons. These features are ranked using t-test and fuzzy Max-Relevancy and Min-Redundancy (mRMR) ranking methods. Then, combinations of highly ranked features are used in the formulation and development of an integrated MII. This calculated novel MII is used to accurately and quickly detect infarcted myocardium by using one numerical value. Also, the highly ranked features are subjected to classification using different classifiers for the characterization of normal and MI LV ultrasound images using a minimum number of features. Our current technique is able to characterize MI with an average accuracy of 94.37%, sensitivity of 91.25% and specificity of 97.50% with 8 apical four chambers view features extracted from only single frame per patient making this a more reliable and accurate classification.


Echocardiography/methods , Image Processing, Computer-Assisted/methods , Myocardial Infarction/diagnostic imaging , Myocardium , Cross-Sectional Studies , Female , Humans , Male
15.
Comput Biol Med ; 69: 97-111, 2016 Feb 01.
Article En | MEDLINE | ID: mdl-26761591

Ultrasound is an important and low cost imaging modality used to study the internal organs of human body and blood flow through blood vessels. It uses high frequency sound waves to acquire images of internal organs. It is used to screen normal, benign and malignant tissues of various organs. Healthy and malignant tissues generate different echoes for ultrasound. Hence, it provides useful information about the potential tumor tissues that can be analyzed for diagnostic purposes before therapeutic procedures. Ultrasound images are affected with speckle noise due to an air gap between the transducer probe and the body. The challenge is to design and develop robust image preprocessing, segmentation and feature extraction algorithms to locate the tumor region and to extract subtle information from isolated tumor region for diagnosis. This information can be revealed using a scale space technique such as the Discrete Wavelet Transform (DWT). It decomposes an image into images at different scales using low pass and high pass filters. These filters help to identify the detail or sudden changes in intensity in the image. These changes are reflected in the wavelet coefficients. Various texture, statistical and image based features can be extracted from these coefficients. The extracted features are subjected to statistical analysis to identify the significant features to discriminate normal and malignant ultrasound images using supervised classifiers. This paper presents a review of wavelet techniques used for preprocessing, segmentation and feature extraction of breast, thyroid, ovarian and prostate cancer using ultrasound images.


Algorithms , Image Processing, Computer-Assisted/methods , Neoplasms/diagnostic imaging , Wavelet Analysis , Humans , Ultrasonography
16.
Eur Neurol ; 74(1-2): 79-83, 2015.
Article En | MEDLINE | ID: mdl-26303033

Depression is a mental disorder characterized by persistent occurrences of lower mood states in the affected person. The electroencephalogram (EEG) signals are highly complex, nonlinear, and nonstationary in nature. The characteristics of the signal vary with the age and mental state of the subject. The signs of abnormality may be invisible to the naked eyes. Even when they are visible, deciphering the minute changes indicating abnormality is tedious and time consuming for the clinicians. This paper presents a novel method for automated EEG-based diagnosis of depression using nonlinear methods: fractal dimension, largest Lyapunov exponent, sample entropy, detrended fluctuation analysis, Hurst's exponent, higher order spectra, and recurrence quantification analysis. A novel Depression Diagnosis Index (DDI) is presented through judicious combination of the nonlinear features. The DDI calculated automatically based on the EEG recordings can be used to diagnose depression objectively using just one numeric value. Also, these features extracted from nonlinear methods are ranked using the t value and fed to the support vector machine (SVM) classifier. The SVM classifier yielded the highest classification performance with an average accuracy of about 98%, sensitivity of about 97%, and specificity of about 98.5%.


Depression/diagnosis , Electroencephalography/methods , Humans , Nonlinear Dynamics , Sensitivity and Specificity , Signal Processing, Computer-Assisted
17.
Eur Neurol ; 73(5-6): 329-36, 2015.
Article En | MEDLINE | ID: mdl-25997732

The complex, nonlinear and non-stationary electroencephalogram (EEG) signals are very tedious to interpret visually and highly difficult to extract the significant features from them. The linear and nonlinear methods are effective in identifying the changes in EEG signals for the detection of depression. Linear methods do not exhibit the complex dynamical variations in the EEG signals. Hence, chaos theory and nonlinear dynamic methods are widely used in extracting the EEG signal features for computer-aided diagnosis (CAD) of depression. Hence, this article presents the recent efforts on CAD of depression using EEG signals with a focus on using nonlinear methods. Such a CAD system is simple to use and may be used by the clinicians as a tool to confirm their diagnosis. It should be of a particular value to enable the early detection of depression.


Depression/diagnosis , Diagnosis, Computer-Assisted/methods , Electroencephalography/methods , Signal Processing, Computer-Assisted , Humans , Nonlinear Dynamics
...